

ISI Type-A Mock Test

Circle the correct option. Correct Answer = 4 marks, Leave Blank = 1, Wrong Answer = 0

Name:
Date:

1. All 2 digits number from 19 to 93 are written in an arbitrary order to form a number, for example $N = 192021\dots93$ can be one such number. The largest power of 3 that divides such a number is;
 A. $3^0 = 1$ B. $3^1 = 3$ C. $3^2 = 9$ D. $3^4 = 81$
2. For two coprime positive integers m and n both being more than 1, $\log_{10} m / \log_{10} n$ is;
 A. is always rational number. B. can sometimes be rational number. C. is always an irrational number. D. is always a root of some polynomial function.
3. The number of primes p such that there exists two integers x and y satisfying $(p+1) = 2x^2$ and $(p^2+1) = 2y^2$ is;
 A. None. B. Only one. C. More than one but finitely many. D. Infinitely many.
4. Let b be a non-zero real number. Suppose that the quadratic equation $2x^2 + bx + \frac{1}{b} = 0$ has two distinct real roots. Then;
 A. $b^2 - 3b > -2$. B. $b + \frac{1}{b} > \frac{5}{2}$ C. $b + \frac{1}{b} < \frac{5}{2}$ D. $b^2 + \frac{1}{b^2} < 4$
5. Let P be an interior point of a convex quadrilateral ABCD, and let K, L, M, N be midpoints of AB, BC, CD, DA respectively. If $\text{Area}(\text{PKAN}) = 25$, $\text{Area}(\text{PLEK}) = 36$ and $\text{Area}(\text{PMDN}) = 41$, then $\text{Area}(\text{PLCM})$ is;
 A. 20 B. 29 C. 52 D. 54
6. The largest number in the sequence $\sqrt[1]{1}, \sqrt[2]{2}, \sqrt[3]{3}, \dots, \sqrt[n]{n}, \dots$ is;
 A. 1. B. $\sqrt[2]{2}$ C. $\sqrt[3]{3}$ D. $\sqrt[8]{8}$
7. If a_0, a_1, \dots be the coefficients of the polynomial $(1 + x + x^2)^{2019}$, starting with the constant term being a_0 , then the sum $S = a_0 + a_2 + a_4 \dots$ is;
 A. is prime. B. is divisible by 2019. C. is odd. D. is even.
8. The roots of the polynomial $p(x) = x^6 + ax^3 + bx^2 + cx + d$ where a, b, c, d are real numbers, are;
 A. are all real for any choice of a, b, c, d . B. are not all real for any choice of a, b, c, d . C. are all real for some choice of a, b, c, d .
 D. None of these.
9. The locus of the points (x, y, z) such that, $x^2 + y^2 + z^2 = 6$ and $x + y + z = 4$ is a / an;
 A. point. B. plane.
 C. ellipse. D. circle.
10. Consider the quadratic polynomial $p(x) = x^2 + 2019x - 12345$. For how many positive integers n , there exists another integer M such that $p(n)p(n+1) = p(M)$?
 A. None. B. Less than 2020 C. More than 2020 but finitely many.
 D. Infinitely many.
11. Let, $A_1 = \left\{ 2(-1)^{n+1} + (-1)^{n(n+1)/2} \left(2 + \frac{3}{n} \right), n \in \mathbb{N} \right\}$ and $A_2 = \left\{ \frac{n-1}{n+1} \cos \frac{2n\pi}{3}, n \in \mathbb{N} \right\}$, then;
 A. $\sup A_1 > \sup A_2$ and $\inf A_1 < \inf A_2$. B. $\sup A_1 > \sup A_2$ and $\inf A_1 > \inf A_2$. C. $\sup A_1 < \sup A_2$ and $\inf A_1 < \inf A_2$.
 D. $\sup A_1 < \sup A_2$ and $\inf A_1 > \inf A_2$.
12. $\lim_{x \rightarrow 0} \left(x^2 \left(1 + 2 + 3 + \dots + \left[\frac{1}{|x|} \right] \right) \right)$;
 A. Does not exist. B. 0 C. 1/2 D. 1
13. Consider a function;

$$f(x) = \begin{cases} |x| & \text{when } x \text{ is irrational or } x = 0 \\ 1/q & \text{when } x = p/q, \text{ with } p, q \in \mathbb{Q} \end{cases}$$

Then f is continuous at;
 A. Nowhere. B. Only $x = 0$. C. At any irrational number and at 0. D. Everywhere.
14. **One SAQ worth 12 marks (4 marks bonus)**
 - (a) Does there exist a bounded function $f(\cdot)$ defined on $[0, 1]$ such that it neither attains its infimum nor supremum?
 If yes, give a concrete proof. If no, give a counterexample.
 - (b) Give an example of a function $f(\cdot)$ defined on $[0, 1]$ such that, it does not achieve its infimum on any $[a, b] \subsetneq [0, 1]$, i.e. $[a, b]$, where $a < b$ is a strict subset of $[0, 1]$.